有理函数多项式:
$\begin{array}{*{20}{l}} {\mathop{{a}}\nolimits_{{i}} \in \mathbb{R} ,n \in \mathbb{N} ,\mathop{{b}}\nolimits_{{i}} \in \mathbb{R} ,m \in \mathbb{N} }\\ {y=\frac{{\mathop{{a}}\nolimits_{{0}}\mathop{{x}}\nolimits^{{n}}+\mathop{{a}}\nolimits_{{1}}\mathop{{x}}\nolimits^{{n-1}}+ \cdots +\mathop{{a}}\nolimits_{{n-1}}x+\mathop{{a}}\nolimits_{{n}}}}{{\mathop{{b}}\nolimits_{{0}}\mathop{{x}}\nolimits^{{m}}+\mathop{{b}}\nolimits_{{1}}\mathop{{x}}\nolimits^{{m-1}}+ \cdots +\mathop{{b}}\nolimits_{{m-1}}x+\mathop{{b}}\nolimits_{{m}}}}} \end{array} $编 辑有理整函数多项式:
$\begin{array}{*{20}{l}} {\mathop{{a}}\nolimits_{{i}} \in \mathbb{R} ,n \in \mathbb{N} }\\ {y=\mathop{{a}}\nolimits_{{0}}\mathop{{x}}\nolimits^{{n}}+\mathop{{a}}\nolimits_{{1}}\mathop{{x}}\nolimits^{{n-1}}+ \cdots +\mathop{{a}}\nolimits_{{n-1}}x+\mathop{{a}}\nolimits_{{n}}} \end{array} $编 辑